Sparse discriminant analysis based on estimation of posterior probabilities
Akinori Hidaka,
Kenji Watanabe and
Takio Kurita
Journal of Applied Statistics, 2019, vol. 46, issue 15, 2761-2785
Abstract:
Fisher's linear discriminant analysis (FLDA) is known as a method to find a discriminative feature space for multi-class classification. As a theory of extending FLDA to an ultimate nonlinear form, optimal nonlinear discriminant analysis (ONDA) has been proposed. ONDA indicates that the best theoretical nonlinear map for maximizing the Fisher's discriminant criterion is formulated by using the Bayesian a posterior probabilities. In addition, the theory proves that FLDA is equivalent to ONDA when the Bayesian a posterior probabilities are approximated by linear regression (LR). Due to some limitations of the linear model, there is room to modify FLDA by using stronger approximation/estimation methods. For the purpose of probability estimation, multi-nominal logistic regression (MLR) is more suitable than LR. Along this line, in this paper, we develop a nonlinear discriminant analysis (NDA) in which the posterior probabilities in ONDA are estimated by MLR. In addition, in this paper, we develop a way to introduce sparseness into discriminant analysis. By applying L1 or L2 regularization to LR or MLR, we can incorporate sparseness in FLDA and our NDA to increase generalization performance. The performance of these methods is evaluated by benchmark experiments using last_exam17 standard datasets and a face classification experiment.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2019.1613348 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:15:p:2761-2785
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2019.1613348
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().