Predicting weed invasion in a sugarcane cultivar using multispectral image
Ana J. Righetto,
Thiago G. Ramires,
Luiz R. Nakamura,
Pedro L. D. B. Castanho,
Christel Faes and
Taciana V. Savian
Journal of Applied Statistics, 2019, vol. 46, issue 1, 1-12
Abstract:
The cultivation of sugar cane has been gaining great focus in several countries due to its diversity of use. The modernization of agriculture has allowed high productivity, which is affected by the invasion of weeds. With sustainable agriculture, the use of herbicides has been increasingly avoided in society, requiring more effective weed control methods. In this paper, we propose a statistical model capable of identifying the invasion of weeds in the field, using four color spectra as regressor variables obtained by a multispectral camera mounted on an unmanned aerial vehicle. With the exact identification of the weed infestation, it is possible to carry out the management in the field with herbicide applications in the exact places, thus avoiding the increase of the cost of production or even dispensing with the use of herbicides, effecting the mechanical removal of them. Results show that in the experimental field, it was possible to reduce herbicide spraying by 57%.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2018.1450362 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:1:p:1-12
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2018.1450362
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().