EconPapers    
Economics at your fingertips  
 

Multiscale Bayesian state-space model for Granger causality analysis of brain signal

Sezen Cekic, Didier Grandjean and Olivier Renaud

Journal of Applied Statistics, 2019, vol. 46, issue 1, 66-84

Abstract: Modelling time-varying and frequency-specific relationships between two brain signals is becoming an essential methodological tool to answer theoretical questions in experimental neuroscience. In this article, we propose to estimate a frequency Granger causality statistic that may vary in time in order to evaluate the functional connections between two brain regions during a task. We use for that purpose an adaptive Kalman filter type of estimator of a linear Gaussian vector autoregressive model with coefficients evolving over time. The estimation procedure is achieved through variational Bayesian approximation and is extended for multiple trials. This Bayesian State Space (BSS) model provides a dynamical Granger-causality statistic that is quite natural. We propose to extend the BSS model to include the à trous Haar decomposition. This wavelet-based forecasting method is based on a multiscale resolution decomposition of the signal using the redundant à trous wavelet transform and allows us to capture short- and long-range dependencies between signals. Equally importantly it allows us to derive the desired dynamical and frequency-specific Granger-causality statistic. The application of these models to intracranial local field potential data recorded during a psychological experimental task shows the complex frequency-based cross-talk between amygdala and medial orbito-frontal cortex.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2018.1455814 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:1:p:66-84

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2018.1455814

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:46:y:2019:i:1:p:66-84