EconPapers    
Economics at your fingertips  
 

A data mining approach to estimating rooftop photovoltaic potential in the US

Caleb Phillips, Ryan Elmore, Jenny Melius, Pieter Gagnon and Robert Margolis

Journal of Applied Statistics, 2019, vol. 46, issue 3, 385-394

Abstract: This paper aims to quantify the amount of suitable rooftop area for photovoltaic (PV) energy generation in the continental United States (US). The approach is data-driven, combining Geographic Information Systems analysis of an extensive dataset of Light Detection and Ranging (LiDAR) measurements collected by the Department of Homeland Security with a statistical model trained on these same data. The model developed herein can predict the quantity of suitable roof area where LiDAR data is not available. This analysis focuses on small buildings (1000 to 5000 square feet) which account for more than half of the total available rooftop space in these data (58%) and demonstrate a greater variability in suitability compared to larger buildings which are nearly all suitable for PV installations. This paper presents new results characterizing the size, shape and suitability of US rooftops with respect to PV installations. Overall 28% of small building roofs appear suitable in the continental United States for rooftop solar. Nationally, small building rooftops could accommodate an expected 731 GW of PV capacity and generate 926 TWh/year of PV energy on 4920 $ {\rm km}^2 $ km2 of suitable rooftop space which equates to 25% the current US electricity sales.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2018.1492525 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:3:p:385-394

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2018.1492525

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:46:y:2019:i:3:p:385-394