A new continuous distribution on the unit interval applied to modelling the points ratio of football teams
Luiz R. Nakamura,
Pedro H. R. Cerqueira,
Thiago G. Ramires,
Rodrigo R. Pescim,
R. A. Rigby and
Dimitrios M. Stasinopoulos
Journal of Applied Statistics, 2019, vol. 46, issue 3, 416-431
Abstract:
We introduce a new flexible distribution to deal with variables on the unit interval based on a transformation of the sinh–arcsinh distribution, which accommodates different degrees of skewness and kurtosis and becomes an interesting alternative to model this type of data. We also include this new distribution into the generalised additive models for location, scale and shape (GAMLSS) framework in order to develop and fit its regression model. For different parameter settings, some simulations are performed to investigate the behaviour of the estimators. The potentiality of the new regression model is illustrated by means of a real dataset related to the points rate of football teams at the end of a championship from the four most important leagues in the world: Barclays Premier League (England), Bundesliga (Germany), Serie A (Italy) and BBVA league (Spain) during three seasons (2011–2012, 2012–2013 and 2013–2014).
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2018.1495699 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:3:p:416-431
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2018.1495699
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().