Sensitivity analysis of longitudinal count responses: a local influence approach and application to medical data
Alejandra Tapia,
Viviana Giampaoli,
Maria del Pilar Diaz and
Victor Leiva
Journal of Applied Statistics, 2019, vol. 46, issue 6, 1021-1042
Abstract:
Longitudinal count responses are often analyzed with a Poisson mixed model. However, under overdispersion, these responses are better described by a negative binomial mixed model. Estimators of the corresponding parameters are usually obtained by the maximum likelihood method. To investigate the stability of these maximum likelihood estimators, we propose a methodology of sensitivity analysis using local influence. As count responses are discrete, we are unable to perturb them with the standard scheme used in local influence. Then, we consider an appropriate perturbation for the means of these responses. The proposed methodology is useful in different applications, but particularly when medical data are analyzed, because the removal of influential cases can change the statistical results and then the medical decision. We study the performance of the methodology by using Monte Carlo simulation and applied it to real medical data related to epilepsy and headache. All of these numerical studies show the good performance and potential of the proposed methodology.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2018.1531978 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:6:p:1021-1042
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2018.1531978
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().