EconPapers    
Economics at your fingertips  
 

Seemingly unrelated regression tree

Jaeoh Kim and HyungJun Cho

Journal of Applied Statistics, 2019, vol. 46, issue 7, 1177-1195

Abstract: Nonparametric seemingly unrelated regression provides a powerful alternative to parametric seemingly unrelated regression for relaxing the linearity assumption. The existing methods are limited, particularly with sharp changes in the relationship between the predictor variables and the corresponding response variable. We propose a new nonparametric method for seemingly unrelated regression, which adopts a tree-structured regression framework, has satisfiable prediction accuracy and interpretability, no restriction on the inclusion of categorical variables, and is less vulnerable to the curse of dimensionality. Moreover, an important feature is constructing a unified tree-structured model for multivariate data, even though the predictor variables corresponding to the response variable are entirely different. This unified model can offer revelatory insights such as underlying economic meaning. We propose the key factors of tree-structured regression, which are an impurity function detecting complex nonlinear relationships between the predictor variables and the response variable, split rule selection with negligible selection bias, and tree size determination solving underfitting and overfitting problems. We demonstrate our proposed method using simulated data and illustrate it using data from the Korea stock exchange sector indices.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2018.1538327 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:7:p:1177-1195

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2018.1538327

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:46:y:2019:i:7:p:1177-1195