EconPapers    
Economics at your fingertips  
 

Predicting recessions using trends in the yield spread

Steven E. Kozlowski and Thaddeus Sim

Journal of Applied Statistics, 2019, vol. 46, issue 7, 1323-1335

Abstract: The yield spread, measured as the difference between long- and short-term interest rates, is widely regarded as one of the strongest predictors of economic recessions. In this paper, we propose an enhanced recession prediction model that incorporates trends in the value of the yield spread. We expect our model to generate stronger recession signals because a steadily declining value of the yield spread typically indicates growing pessimism associated with the reduced future business activity. We capture trends in the yield spread by considering both the level of the yield spread at a lag of 12 months as well as its value at each of the previous two quarters leading up to the forecast origin, and we evaluate its predictive abilities using both logit and artificial neural network models. Our results indicate that models incorporating information from the time series of the yield spread correctly predict future recession periods much better than models only considering the spread value as of the forecast origin. Furthermore, the results are strongest for our artificial neural network model and logistic regression model that includes interaction terms, which we confirm using both a blocked cross-validation technique as well as an expanding estimation window approach.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2018.1537364 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:7:p:1323-1335

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2018.1537364

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:46:y:2019:i:7:p:1323-1335