Optimum reliability acceptance sampling plans under progressive type-I interval censoring with random removal using a cost model
Sonal Budhiraja and
Biswabrata Pradhan
Journal of Applied Statistics, 2019, vol. 46, issue 8, 1492-1517
Abstract:
A reliability acceptance sampling plan (RASP) is a variable sampling plan, which is used for lot sentencing based on the lifetime of the product under consideration. If a good lot is rejected then there is a loss of sales, whereas if a bad lot is accepted then the post sale cost increases and the brand image of the product is affected. Since cost is an important decision-making factor, adopting an economically optimal RASP is indispensable. This work considers the determination of an asymptotically optimum RASP under progressive type-I interval censoring scheme with random removal (PICR-I). We formulate a decision model for lot sentencing and a cost function is proposed that quantifies the losses. The cost function includes the cost of conducting the life test and warranty cost when the lot is accepted, and the cost of batch disposition when it is rejected. The asymptotically optimal RASP is obtained by minimizing the Bayes risk in a set of decision rules based on the maximum likelihood estimator of the mean lifetime of the items in the lot. For numerical illustration, we consider that lifetimes follow exponential or Weibull distributions.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2018.1554626 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:8:p:1492-1517
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2018.1554626
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().