Dichotomous unimodal compound models: application to the distribution of insurance losses
Salvatore D. Tomarchio and
Antonio Punzo
Journal of Applied Statistics, 2020, vol. 47, issue 13-15, 2328-2353
Abstract:
A correct modelization of the insurance losses distribution is crucial in the insurance industry. This distribution is generally highly positively skewed, unimodal hump-shaped, and with a heavy right tail. Compound models are a profitable way to accommodate situations in which some of the probability masses are shifted to the tails of the distribution. Therefore, in this work, a general approach to compound unimodal hump-shaped distributions with a mixing dichotomous distribution is introduced. A 2-parameter unimodal hump-shaped distribution, defined on a positive support, is considered and reparametrized with respect to the mode and to another parameter related to the distribution variability. The compound is performed by scaling the latter parameter by means of a dichotomous mixing distribution that governs the tail behavior of the resulting model. The proposed model can also allow for automatic detection of typical and atypical losses via a simple procedure based on maximum a posteriori probabilities. Unimodal gamma and log-normal are considered as examples of unimodal hump-shaped distributions. The resulting models are firstly evaluated in a sensitivity study and then fitted to two real insurance loss datasets, along with several well-known competitors. Likelihood-based information criteria and risk measures are used to compare the models.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1789076 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:47:y:2020:i:13-15:p:2328-2353
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1789076
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().