EconPapers    
Economics at your fingertips  
 

Process capability indices in normal distribution with the presence of outliers

M. Jabbari Nooghabi

Journal of Applied Statistics, 2020, vol. 47, issue 13-15, 2443-2478

Abstract: Process capability indices (PCIs) are useful measures to evaluate the performance and capability of a process when it is under control. Assuming the specification variable is distributed from a normal population, several PCIs are derived by the researchers. Also, many scientists have worked on these indices when data are contaminated with outliers as well as in the homogenous case. But, in almost all studies, they evaluated the effect of outliers on the PCIs nonparametrical and used robust methods. Here, the parametric model of outliers is considered and introduced the PCIs based on the outliers model. Therefore, these indices are estimated based on the maximum-likelihood and moment estimator of the unknown parameters of the normal distribution contaminated by outliers. Finally, the performances of these measures as well as their parametric and nonparametric estimators are discussed by using simulation studies and several numerical examples. It has been seen that parametric estimation has better performances than a nonparametric method.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1796934 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:47:y:2020:i:13-15:p:2443-2478

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2020.1796934

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:47:y:2020:i:13-15:p:2443-2478