Inference of progressively type-II censored competing risks data from Chen distribution with an application
Essam A. Ahmed,
Ziyad Ali Alhussain,
Mukhtar M. Salah,
Hanan Haj Ahmed and
M. S. Eliwa
Journal of Applied Statistics, 2020, vol. 47, issue 13-15, 2492-2524
Abstract:
In this paper, the estimation of unknown parameters of Chen distribution is considered under progressive Type-II censoring in the presence of competing failure causes. It is assumed that the latent causes of failures have independent Chen distributions with the common shape parameter, but different scale parameters. From a frequentist perspective, the maximum likelihood estimate of parameters via expectation–maximization (EM) algorithm is obtained. Also, the expected Fisher information matrix based on the missing information principle is computed. By using the obtained expected Fisher information matrix of the MLEs, asymptotic 95% confidence intervals for the parameters are constructed. We also apply the bootstrap methods (Bootstrap-p and Bootstrap-t) to construct confidence intervals. From Bayesian aspect, the Bayes estimates of the unknown parameters are computed by applying the Markov chain Monte Carlo (MCMC) procedure, the average length and coverage rate of credible intervals are also carried out. The Bayes inference is based on the squared error, LINEX, and general entropy loss functions. The performance of point estimators and confidence intervals is evaluated by a simulation study. Finally, a real-life example is considered for illustrative purposes.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1815670 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:47:y:2020:i:13-15:p:2492-2524
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1815670
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().