EconPapers    
Economics at your fingertips  
 

Inference of progressively type-II censored competing risks data from Chen distribution with an application

Essam A. Ahmed, Ziyad Ali Alhussain, Mukhtar M. Salah, Hanan Haj Ahmed and M. S. Eliwa

Journal of Applied Statistics, 2020, vol. 47, issue 13-15, 2492-2524

Abstract: In this paper, the estimation of unknown parameters of Chen distribution is considered under progressive Type-II censoring in the presence of competing failure causes. It is assumed that the latent causes of failures have independent Chen distributions with the common shape parameter, but different scale parameters. From a frequentist perspective, the maximum likelihood estimate of parameters via expectation–maximization (EM) algorithm is obtained. Also, the expected Fisher information matrix based on the missing information principle is computed. By using the obtained expected Fisher information matrix of the MLEs, asymptotic 95% confidence intervals for the parameters are constructed. We also apply the bootstrap methods (Bootstrap-p and Bootstrap-t) to construct confidence intervals. From Bayesian aspect, the Bayes estimates of the unknown parameters are computed by applying the Markov chain Monte Carlo (MCMC) procedure, the average length and coverage rate of credible intervals are also carried out. The Bayes inference is based on the squared error, LINEX, and general entropy loss functions. The performance of point estimators and confidence intervals is evaluated by a simulation study. Finally, a real-life example is considered for illustrative purposes.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1815670 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:47:y:2020:i:13-15:p:2492-2524

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2020.1815670

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:47:y:2020:i:13-15:p:2492-2524