Inference for bivariate integer-valued moving average models based on binomial thinning operation
Isabel Silva,
Maria Eduarda Silva and
Cristina Torres
Journal of Applied Statistics, 2020, vol. 47, issue 13-15, 2546-2564
Abstract:
Time series of (small) counts are common in practice and appear in a wide variety of fields. In the last three decades, several models that explicitly account for the discreteness of the data have been proposed in the literature. However, for multivariate time series of counts several difficulties arise and the literature is not so detailed. This work considers Bivariate INteger-valued Moving Average, BINMA, models based on the binomial thinning operation. The main probabilistic and statistical properties of BINMA models are studied. Two parametric cases are analysed, one with the cross-correlation generated through a Bivariate Poisson innovation process and another with a Bivariate Negative Binomial innovation process. Moreover, parameter estimation is carried out by the Generalized Method of Moments. The performance of the model is illustrated with synthetic data as well as with real datasets.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1747411 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:47:y:2020:i:13-15:p:2546-2564
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1747411
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().