Reconceptualizing the p-value from a likelihood ratio test: a probabilistic pairwise comparison of models based on Kullback-Leibler discrepancy measures
Benjamin Riedle,
Andrew A. Neath and
Joseph E. Cavanaugh
Journal of Applied Statistics, 2020, vol. 47, issue 13-15, 2582-2609
Abstract:
Discrepancy measures are often employed in problems involving the selection and assessment of statistical models. A discrepancy gauges the separation between a fitted candidate model and the underlying generating model. In this work, we consider pairwise comparisons of fitted models based on a probabilistic evaluation of the ordering of the constituent discrepancies. An estimator of the probability is derived using the bootstrap. In the framework of hypothesis testing, nested models are often compared on the basis of the p-value. Specifically, the simpler null model is favored unless the p-value is sufficiently small, in which case the null model is rejected and the more general alternative model is retained. Using suitably defined discrepancy measures, we mathematically show that, in general settings, the likelihood ratio test p-value is approximated by the bootstrapped discrepancy comparison probability (BDCP). We argue that the connection between the p-value and the BDCP leads to potentially new insights regarding the utility and limitations of the p-value. The BDCP framework also facilitates discrepancy-based inferences in settings beyond the limited confines of nested model hypothesis testing.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1754360 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:47:y:2020:i:13-15:p:2582-2609
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1754360
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().