Variable selection in finite mixture of regression models using the skew-normal distribution
Junhui Yin,
Liucang Wu and
Lin Dai
Journal of Applied Statistics, 2020, vol. 47, issue 16, 2941-2960
Abstract:
Variable selection in finite mixture of regression (FMR) models is frequently used in statistical modeling. The majority of applications of variable selection in FMR models use a normal distribution for regression error. Such assumptions are unsuitable for a set of data containing a group or groups of observations with asymmetric behavior. In this paper, we introduce a variable selection procedure for FMR models using the skew-normal distribution. With appropriate choice of the tuning parameters, we establish the theoretical properties of our procedure, including consistency in variable selection and the oracle property in estimation. To estimate the parameters of the model, a modified EM algorithm for numerical computations is developed. The methodology is illustrated through numerical experiments and a real data example.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2019.1709051 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:47:y:2020:i:16:p:2941-2960
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2019.1709051
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().