A geometric approach for computing tolerance bounds for elastic functional data
J. Derek Tucker,
John R. Lewis,
Caleb King and
Sebastian Kurtek
Journal of Applied Statistics, 2020, vol. 47, issue 3, 481-505
Abstract:
We develop a method for constructing tolerance bounds for functional data with random warping variability. In particular, we define a generative, probabilistic model for the amplitude and phase components of such observations, which parsimoniously characterizes variability in the baseline data. Based on the proposed model, we define two different types of tolerance bounds that are able to measure both types of variability, and as a result, identify when the data has gone beyond the bounds of amplitude and/or phase. The first functional tolerance bounds are computed via a bootstrap procedure on the geometric space of amplitude and phase functions. The second functional tolerance bounds utilize functional Principal Component Analysis to construct a tolerance factor. This work is motivated by two main applications: process control and disease monitoring. The problem of statistical analysis and modeling of functional data in process control is important in determining when a production has moved beyond a baseline. Similarly, in biomedical applications, doctors use long, approximately periodic signals (such as the electrocardiogram) to diagnose and monitor diseases. In this context, it is desirable to identify abnormalities in these signals. We additionally consider a simulated example to assess our approach and compare it to two existing methods.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2019.1645818 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:47:y:2020:i:3:p:481-505
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2019.1645818
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().