Do German economic research institutes publish efficient growth and inflation forecasts? A Bayesian analysis
Christoph Behrens,
Christian Pierdzioch and
Marian Risse
Journal of Applied Statistics, 2020, vol. 47, issue 4, 698-723
Abstract:
We use Bayesian additive regression trees to reexamine the efficiency of growth and inflation forecasts for Germany. To this end, we use forecasts of four leading German economic research institutes for the sample period from 1970 to 2016. We reject the strong form of forecast efficiency and find evidence against the weak form of forecast efficiency for longer-term growth and longer-term inflation forecasts. We cannot reject weak efficiency of short-term growth and inflation forecasts and of forecasts disaggregated at the institute level. We find that Bayesian additive regression trees perform significantly better than a standard linear efficiency-regression model in terms of forecast accuracy.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2019.1652253 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:47:y:2020:i:4:p:698-723
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2019.1652253
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().