EconPapers    
Economics at your fingertips  
 

Do German economic research institutes publish efficient growth and inflation forecasts? A Bayesian analysis

Christoph Behrens, Christian Pierdzioch and Marian Risse

Journal of Applied Statistics, 2020, vol. 47, issue 4, 698-723

Abstract: We use Bayesian additive regression trees to reexamine the efficiency of growth and inflation forecasts for Germany. To this end, we use forecasts of four leading German economic research institutes for the sample period from 1970 to 2016. We reject the strong form of forecast efficiency and find evidence against the weak form of forecast efficiency for longer-term growth and longer-term inflation forecasts. We cannot reject weak efficiency of short-term growth and inflation forecasts and of forecasts disaggregated at the institute level. We find that Bayesian additive regression trees perform significantly better than a standard linear efficiency-regression model in terms of forecast accuracy.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2019.1652253 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:47:y:2020:i:4:p:698-723

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2019.1652253

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:japsta:v:47:y:2020:i:4:p:698-723