EconPapers    
Economics at your fingertips  
 

A bivariate inverse Weibull distribution and its application in complementary risks model

Shuvashree Mondal and Debasis Kundu

Journal of Applied Statistics, 2020, vol. 47, issue 6, 1084-1108

Abstract: In reliability and survival analysis the inverse Weibull distribution has been used quite extensively as a heavy tailed distribution with a non-monotone hazard function. Recently a bivariate inverse Weibull (BIW) distribution has been introduced in the literature, where the marginals have inverse Weibull distributions and it has a singular component. Due to this reason this model cannot be used when there are no ties in the data. In this paper we have introduced an absolutely continuous bivariate inverse Weibull (ACBIW) distribution omitting the singular component from the BIW distribution. A natural application of this model can be seen in the analysis of dependent complementary risks data. We discuss different properties of this model and also address the inferential issues both from the classical and Bayesian approaches. In the classical approach, the maximum likelihood estimators cannot be obtained explicitly and we propose to use the expectation maximization algorithm based on the missing value principle. In the Bayesian analysis, we use a very flexible prior on the unknown model parameters and obtain the Bayes estimates and the associated credible intervals using importance sampling technique. Simulation experiments are performed to see the effectiveness of the proposed methods and two data sets have been analyzed to see how the proposed methods and the model work in practice.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2019.1669542 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:47:y:2020:i:6:p:1084-1108

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2019.1669542

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:47:y:2020:i:6:p:1084-1108