Modified likelihood ratio tests for unit gamma regressions
Ana C. Guedes,
Francisco Cribari-Neto and
Patrícia L. Espinheira
Journal of Applied Statistics, 2020, vol. 47, issue 9, 1562-1586
Abstract:
Regression analyses are commonly performed with doubly limited continuous dependent variables; for instance, when modeling the behavior of rates, proportions and income concentration indices. Several models are available in the literature for use with such variables, one of them being the unit gamma regression model. In all such models, parameter estimation is typically performed using the maximum likelihood method and testing inferences on the model's parameters are usually based on the likelihood ratio test. Such a test can, however, deliver quite imprecise inferences when the sample size is small. In this paper, we propose two modified likelihood ratio test statistics for use with the unit gamma regressions that deliver much more accurate inferences when the number of data points in small. Numerical (i.e. simulation) evidence is presented for both fixed dispersion and varying dispersion models, and also for tests that involve nonnested models. We also present and discuss two empirical applications.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2019.1683152 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:47:y:2020:i:9:p:1562-1586
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2019.1683152
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().