EconPapers    
Economics at your fingertips  
 

An elastic-net penalized expectile regression with applications

Q.F. Xu, X.H. Ding, C.X. Jiang, K.M. Yu and L. Shi

Journal of Applied Statistics, 2021, vol. 48, issue 12, 2205-2230

Abstract: To perform variable selection in expectile regression, we introduce the elastic-net penalty into expectile regression and propose an elastic-net penalized expectile regression (ER-EN) model. We then adopt the semismooth Newton coordinate descent (SNCD) algorithm to solve the proposed ER-EN model in high-dimensional settings. The advantages of ER-EN model are illustrated via extensive Monte Carlo simulations. The numerical results show that the ER-EN model outperforms the elastic-net penalized least squares regression (LSR-EN), the elastic-net penalized Huber regression (HR-EN), the elastic-net penalized quantile regression (QR-EN) and conventional expectile regression (ER) in terms of variable selection and predictive ability, especially for asymmetric distributions. We also apply the ER-EN model to two real-world applications: relative location of CT slices on the axial axis and metabolism of tacrolimus (Tac) drug. Empirical results also demonstrate the superiority of the ER-EN model.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1787355 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:12:p:2205-2230

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2020.1787355

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:48:y:2021:i:12:p:2205-2230