Reject inference methods in credit scoring
Adrien Ehrhardt,
Christophe Biernacki,
Vincent Vandewalle,
Philippe Heinrich and
Sébastien Beben
Journal of Applied Statistics, 2021, vol. 48, issue 13-15, 2734-2754
Abstract:
The granting process is based on the probability that the applicant will refund his/her loan given his/her characteristics. This probability, also called score, is learnt based on a dataset in which rejected applicants are excluded. Thus, the population on which the score is used is different from the learning population. Many “reject inference” methods try to exploit the data available from the rejected applicants in the learning process. However, most of these methods are empirical and lack of formalization of their assumptions, and of their expected theoretical properties. We formalize such hidden assumptions in a general missing data setting for some of the most common reject inference methods. It reveals that hidden modelling is mostly incomplete, thus prohibiting to compare existing methods within the general model selection mechanism (except by financing “non-fundable” applicants). So, we assess performance of the methods on both simulated data and real data (from CACF, a major European loan issuer). Unsurprisingly, no method seems uniformly dominant. Both these theoretical and empirical results not only reinforce the idea to carefully use the classical reject inference methods but also to invest in future research works for designing model-based reject inference methods (without financing “non-fundable” applicants).
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.1929090 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:13-15:p:2734-2754
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2021.1929090
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().