Estimation in the partially nonlinear model by continuous optimization
Fatma Yerlikaya-Özkurt,
Pakize Taylan and
Müjgan Tez
Journal of Applied Statistics, 2021, vol. 48, issue 13-15, 2826-2846
Abstract:
A useful model for data analysis is the partially nonlinear model where response variable is represented as the sum of a nonparametric and a parametric component. In this study, we propose a new procedure for estimating the parameters in the partially nonlinear models. Therefore, we consider penalized profile nonlinear least square problem where nonparametric components are expressed as a B-spline basis function, and then estimation problem is expressed in terms of conic quadratic programming which is a continuous optimization problem and solved interior point method. An application study is conducted to evaluate the performance of the proposed method by considering some well-known performance measures. The results are compared against parametric nonlinear model.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1864816 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:13-15:p:2826-2846
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1864816
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().