A new bivariate Poisson distribution via conditional specification: properties and applications
Indranil Ghosh,
Filipe Marques and
Subrata Chakraborty
Journal of Applied Statistics, 2021, vol. 48, issue 16, 3025-3047
Abstract:
In this article, we discuss a bivariate Poisson distribution whose conditionals are univariate Poisson distributions and the marginals are not Poisson which exhibits negative correlation. Some useful structural properties of this distribution namely marginals, moments, generating functions, stochastic ordering are investigated. Simple proofs of negative correlation, marginal over-dispersion, distribution of sum and conditional given the sum are also derived. The distribution is shown to be a member of the multi-parameter exponential family and some natural but useful consequences are also outlined. Parameter estimation with maximum likelihood is implemented. Copula-based simulation experiments are carried out using Bivariate Normal and the Farlie–Gumbel–Morgenstern copulas to assess how the model behaves in dealing with the situation. Finally, the distribution is fitted to seven bivariate count data sets with an inherent negative correlation to illustrate suitability.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1793307 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:16:p:3025-3047
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1793307
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().