Linear censored regression models with skew scale mixtures of normal distributions
Daniel C. F. Guzmán,
Clécio S. Ferreira and
Camila B. Zeller
Journal of Applied Statistics, 2021, vol. 48, issue 16, 3060-3085
Abstract:
A special source of difficulty in the statistical analysis is the possibility that some subjects may not have a complete observation of the response variable. Such incomplete observation of the response variable is called censoring. Censorship can occur for a variety of reasons, including limitations of measurement equipment, design of the experiment, and non-occurrence of the event of interest until the end of the study. In the presence of censoring, the dependence of the response variable on the explanatory variables can be explored through regression analysis. In this paper, we propose to examine the censorship problem in context of the class of asymmetric, i.e., we have proposed a linear regression model with censored responses based on skew scale mixtures of normal distributions. We develop a Monte Carlo EM (MCEM) algorithm to perform maximum likelihood inference of the parameters in the proposed linear censored regression models with skew scale mixtures of normal distributions. The MCEM algorithm has been discussed with an emphasis on the skew-normal, skew Student-t-normal, skew-slash and skew-contaminated normal distributions. To examine the performance of the proposed method, we present some simulation studies and analyze a real dataset.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1795814 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:16:p:3060-3085
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1795814
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().