A comparison study on modeling of clustered and overdispersed count data for multiple comparisons
Jochen Kruppa and
Ludwig Hothorn
Journal of Applied Statistics, 2021, vol. 48, issue 16, 3220-3232
Abstract:
Data collected in various scientific fields are count data. One way to analyze such data is to compare the individual levels of the factor treatment using multiple comparisons. However, the measured individuals are often clustered – e.g. according to litter or rearing. This must be considered when estimating the parameters by a repeated measurement model. In addition, ignoring the overdispersion to which count data is prone leads to an increase of the type one error rate. We carry out simulation studies using several different data settings and compare different multiple contrast tests with parameter estimates from generalized estimation equations and generalized linear mixed models in order to observe coverage and rejection probabilities. We generate overdispersed, clustered count data in small samples as can be observed in many biological settings. We have found that the generalized estimation equations outperform generalized linear mixed models if the variance-sandwich estimator is correctly specified. Furthermore, generalized linear mixed models show problems with the convergence rate under certain data settings, but there are model implementations with lower implications exists. Finally, we use an example of genetic data to demonstrate the application of the multiple contrast test and the problems of ignoring strong overdispersion.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1788518 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:16:p:3220-3232
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1788518
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().