On the ‘optimal’ density power divergence tuning parameter
Sancharee Basak,
Ayanendranath Basu and
M. C. Jones
Journal of Applied Statistics, 2021, vol. 48, issue 3, 536-556
Abstract:
The density power divergence, indexed by a single tuning parameter α, has proved to be a very useful tool in minimum distance inference. The family of density power divergences provides a generalized estimation scheme which includes likelihood-based procedures (represented by choice $\alpha = 0 $α=0 for the tuning parameter) as a special case. However, under data contamination, this scheme provides several more stable choices for model fitting and analysis (provided by positive values for the tuning parameter α). As larger values of α necessarily lead to a drop in model efficiency, determining the optimal value of α to provide the best compromise between model-efficiency and stability against data contamination in any real situation is a major challenge. In this paper, we provide a refinement of an existing technique with the aim of eliminating the dependence of the procedure on an initial pilot estimator. Numerical evidence is provided to demonstrate the very good performance of the method. Our technique has a general flavour, and we expect that similar tuning parameter selection algorithms will work well for other M-estimators, or any robust procedure that depends on the choice of a tuning parameter.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1736524 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:3:p:536-556
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1736524
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().