A discrete analog of Gumbel distribution: properties, parameter estimation and applications
Subrata Chakraborty,
Dhrubajyoti Chakravarty,
Josmar Mazucheli and
Wesley Bertoli
Journal of Applied Statistics, 2021, vol. 48, issue 4, 712-737
Abstract:
A discrete version of the Gumbel distribution (Type-I Extreme Value distribution) has been derived by using the general approach of discretization of a continuous distribution. Important distributional and reliability properties have been explored. It has been shown that depending on the choice of parameters the proposed distribution can be positively or negatively skewed; possess long-tail(s). Log-concavity of the distribution and consequent results have been established. Estimation of parameters by method of maximum likelihood, method of moments, and method of proportions has been discussed. A method of checking model adequacy and regression type estimation based on empirical survival function has also been examined. A simulation study has been carried out to compare and check the efficacy of the three methods of estimations. The distribution has been applied to model three real count data sets from diverse application area namely, survival times in number of days, maximum annual floods data from Brazil and goal differences in English premier league, and the results show the relevance of the proposed distribution.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1744538 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:4:p:712-737
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1744538
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().