EconPapers    
Economics at your fingertips  
 

Significance test for linear regression: how to test without P-values?

Paravee Maneejuk and Woraphon Yamaka

Journal of Applied Statistics, 2021, vol. 48, issue 5, 827-845

Abstract: The discussion on the use and misuse of p-values in 2016 by the American Statistician Association was a timely assertion that statistical concept should be properly used in science. Some researchers, especially the economists, who adopt significance testing and p-values to report their results, may felt confused by the statement, leading to misinterpretations of the statement. In this study, we aim to re-examine the accuracy of the p-value and introduce an alternative way for testing the hypothesis. We conduct a simulation study to investigate the reliability of the p-value. Apart from investigating the performance of p-value, we also introduce some existing approaches, Minimum Bayes Factors and Belief functions, for replacing p-value. Results from the simulation study confirm unreliable p-value in some cases and that our proposed approaches seem to be useful as the substituted tool in the statistical inference. Moreover, our results show that the plausibility approach is more accurate for making decisions about the null hypothesis than the traditionally used p-values when the null hypothesis is true. However, the MBFs of Edwards et al. [Bayesian statistical inference for psychological research. Psychol. Rev. 70(3) (1963), pp. 193–242]; Vovk [A logic of probability, with application to the foundations of statistics. J. Royal Statistical Soc. Series B (Methodological) 55 (1993), pp. 317–351] and Sellke et al. [Calibration of p values for testing precise null hypotheses. Am. Stat. 55(1) (2001), pp. 62–71] provide more reliable results compared to all other methods when the null hypothesis is false.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1748180 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:5:p:827-845

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2020.1748180

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:48:y:2021:i:5:p:827-845