Empirical evaluation of sub-cohort sampling designs for risk prediction modeling
Myeonggyun Lee,
Anne Zeleniuch-Jacquotte and
Mengling Liu
Journal of Applied Statistics, 2021, vol. 48, issue 8, 1374-1401
Abstract:
Sub-cohort sampling designs, such as nested case-control (NCC) and case-cohort (CC) studies, have been widely used to estimate biomarker-disease associations because of their cost effectiveness. These designs have been well studied and shown to maintain relatively high efficiency compared to full-cohort designs, but their performance of building risk prediction models has been less studied. Moreover, sub-cohort sampling designs often use matching (or stratifying) to further control for confounders or to reduce measurement error. Their predictive performance depends on both the design and matching procedures. Based on a dataset from the NYU Women's Health Study (NYUWHS), we performed Monte Carlo simulations to systematically evaluate risk prediction performance under NCC, CC, and full-cohort studies. Our simulations demonstrate that sub-cohort sampling designs can have predictive accuracy (i.e. discrimination and calibration) similar to that of the full-cohort design, but could be sensitive to the matching procedure used. Our results suggest that researchers can have the option of performing NCC and CC studies with huge potential benefits in cost and resources, but need to pay particular attention to the matching procedure when developing a risk prediction model in biomarker studies.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1861225 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:8:p:1374-1401
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1861225
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().