EconPapers    
Economics at your fingertips  
 

An elastic net penalized small area model combining unit- and area-level data for regional hypertension prevalence estimation

J. P. Burgard, J. Krause and R. Münnich

Journal of Applied Statistics, 2021, vol. 48, issue 9, 1659-1674

Abstract: Hypertension is a highly prevalent cardiovascular disease. It marks a considerable cost factor to many national health systems. Despite its prevalence, regional disease distributions are often unknown and must be estimated from survey data. However, health surveys frequently lack in regional observations due to limited resources. Obtained prevalence estimates suffer from unacceptably large sampling variances and are not reliable. Small area estimation solves this problem by linking auxiliary data from multiple regions in suitable regression models. Typically, either unit- or area-level observations are considered for this purpose. But with respect to hypertension, both levels should be used. Hypertension has characteristic comorbidities and is strongly related to lifestyle features, which are unit-level information. It is also correlated with socioeconomic indicators that are usually measured on the area-level. But the level combination is challenging as it requires multi-level model parameter estimation from small samples. We use a multi-level small area model with level-specific penalization to overcome this issue. Model parameter estimation is performed via stochastic coordinate gradient descent. A jackknife estimator of the mean squared error is presented. The methodology is applied to combine health survey data and administrative records to estimate regional hypertension prevalence in Germany.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1765323 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:9:p:1659-1674

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2020.1765323

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:48:y:2021:i:9:p:1659-1674