Conservative confidence intervals for the intraclass correlation coefficient for clustered binary data
Guogen Shan
Journal of Applied Statistics, 2022, vol. 49, issue 10, 2535-2549
Abstract:
Asymptotic approaches are traditionally used to calculate confidence intervals for intraclass correlation coefficient in a clustered binary study. When sample size is small to medium, or correlation or response rate is near the boundary, asymptotic intervals often do not have satisfactory performance with regard to coverage. We propose using the importance sampling method to construct the profile confidence limits for the intraclass correlation coefficient. Importance sampling is a simulation based approach to reduce the variance of the estimated parameter. Four existing asymptotic limits are used as statistical quantities for sample space ordering in the importance sampling method. Simulation studies are performed to evaluate the performance of the proposed accurate intervals with regard to coverage and interval width. Simulation results indicate that the accurate intervals based on the asymptotic limits by Fleiss and Cuzick generally have shorter width than others in many cases, while the accurate intervals based on Zou and Donner asymptotic limits outperform others when correlation and response rate are close to their boundaries.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.1910939 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:10:p:2535-2549
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2021.1910939
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().