How reliable are the multiple comparison methods for odds ratio?
Ayfer Ezgi Yilmaz
Journal of Applied Statistics, 2022, vol. 49, issue 12, 3141-3163
Abstract:
The homogeneity tests of odds ratios are used in clinical trials and epidemiological investigations as a preliminary step of meta-analysis. In recent studies, the severity or mortality of COVID-19 in relation to demographic characteristics, comorbidities, and other conditions has been popularly discussed by interpreting odds ratios and using meta-analysis. According to the homogeneity test results, a common odds ratio summarizes all of the odds ratios in a series of studies. If the aim is not to find a common odds ratio, but to find which of the sub-characteristics/groups is different from the others or is under risk, then the implementation of a multiple comparison procedure is required. In this article, the focus is placed on the accuracy and reliability of the homogeneity of odds ratio tests for multiple comparisons when the odds ratios are heterogeneous at the omnibus level. Three recently proposed multiple comparison tests and four homogeneity of odds ratios tests with six adjustment methods to control the type-I error rate are considered. The reliability and accuracy of the methods are discussed in relation to COVID-19 severity data associated with diabetes on a country-by-country basis, and a simulation study to assess the powers and type-I error rates of the tests is conducted.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2022.2104229 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:12:p:3141-3163
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2022.2104229
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().