Bayesian variable selection in quantile regression with random effects: an application to Municipal Human Development Index
Marcus G. L. Nascimento and
Kelly C. M. Gonçalves
Journal of Applied Statistics, 2022, vol. 49, issue 13, 3436-3450
Abstract:
According to the Atlas of Human Development in Brazil, the income dimension of Municipal Human Development Index (MHDI-I) is an indicator that shows the population's ability in a municipality to ensure a minimum standard of living to provide their basic needs, such as water, food and shelter. In public policy, one of the research objectives is to identify social and economic variables that are associated with this index. Due to the income inequality, evaluate these associations in quantiles, instead of the mean, could be more interest. Thus, in this paper, we develop a Bayesian variable selection in quantile regression models with hierarchical random effects. In particular, we assume a likelihood function based on the Generalized Asymmetric Laplace distribution, and a spike-and-slab prior is used to perform variable selection. The Generalized Asymmetric Laplace distribution is a more general alternative than the Asymmetric Laplace one, which is a common approach used in quantile regression under the Bayesian paradigm. The performance of the proposed method is evaluated via a comprehensive simulation study, and it is applied to the MHDI-I from municipalities located in the state of Rio de Janeiro.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.1950654 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:13:p:3436-3450
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2021.1950654
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().