EconPapers    
Economics at your fingertips  
 

Zero-inflated models for adjusting varying exposures: a cautionary note on the pitfalls of using offset

Cindy Feng

Journal of Applied Statistics, 2022, vol. 49, issue 1, 1-23

Abstract: Zero-inflated count data are frequently encountered in public health and epidemiology research. Two-parts model is often used to model the excessive zeros, which are a mixture of two components: a point mass at zero and a count distribution, such as a Poisson distribution. When the rate of events per unit exposure is of interest, offset is commonly used to account for the varying extent of exposure, which is essentially a predictor whose regression coefficient is fixed at one. Such an assumption of exposure effect is, however, quite restrictive for many practical problems. Further, for zero-inflated models, offset is often only included in the count component of the model. However, the probability of excessive zero component could also be affected by the amount of ‘exposure’. We, therefore, proposed incorporating the varying exposure as a covariate rather than an offset term in both the probability of excessive zeros and conditional counts components of the zero-inflated model. A real example is used to illustrate the usage of the proposed methods, and simulation studies are conducted to assess the performance of the proposed methods for a broad variety of situations.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1796943 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:1:p:1-23

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2020.1796943

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:49:y:2022:i:1:p:1-23