Reliability analysis of multicomponent stress–strength reliability from a bathtub-shaped distribution
Liang Wang,
Ke Wu,
Yogesh Mani Tripathi and
Chandrakant Lodhi
Journal of Applied Statistics, 2022, vol. 49, issue 1, 122-142
Abstract:
In this paper, inference for a multicomponent stress–strength model is studied. When latent strength and stress random variables follow a bathtub-shaped distribution and the failure times are Type-II censored, the maximum likelihood estimate of the multicomponent stress–strength reliability (MSR) is established when there are common strength and stress parameters. Approximate confidence interval is also constructed by using the asymptotic distribution theory and delta method. Furthermore, another alternative generalized point and confidence interval estimators for the MSR are constructed based on pivotal quantities. Moreover, the likelihood and the pivotal quantities-based estimates for the MSR are also provided under unequal strength and stress parameter case. To compare the equivalence of the stress and strength parameters, the likelihood ratio test for hypothesis of interest is also provided. Finally, simulation studies and a real data example are given for illustration.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1803808 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:1:p:122-142
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1803808
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().