A model-based approach to Spotify data analysis: a Beta GLMM
Mariangela Sciandra and
Irene Carola Spera
Journal of Applied Statistics, 2022, vol. 49, issue 1, 214-229
Abstract:
Digital music distribution is increasingly powered by automated mechanisms that continuously capture, sort and analyze large amounts of Web-based data. This paper deals with the management of songs audio features from a statistical point of view. In particular, it explores the data catching mechanisms enabled by Spotify Web API and suggests statistical tools for the analysis of these data. Special attention is devoted to songs popularity and a Beta model, including random effects, is proposed in order to give the first answer to questions like: which are the determinants of popularity? The identification of a model able to describe this relationship, the determination within the set of characteristics of those considered most important in making a song popular is a very interesting topic for those who aim to predict the success of new products.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1803810 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:1:p:214-229
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1803810
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().