EconPapers    
Economics at your fingertips  
 

Combination of multiple functional markers to improve diagnostic accuracy

Haiqiang Ma, Jin Yang, Sheng Xu, Chao Liu and Qinyi Zhang

Journal of Applied Statistics, 2022, vol. 49, issue 1, 44-63

Abstract: Combination of multiple biomarkers to improve diagnostic accuracy is meaningful for practitioners and clinicians, and are attractive to lots of researchers. Nowadays, with development of modern techniques, functional markers such as curves or images, play an important role in diagnosis. There exists rich literature developing combination methods for continuous scalar markers. Unfortunately, only sporadic works have studied how functional markers affect diagnosis in the literature. Moreover, no publication can be found to do combination of multiple functional markers to improve the diagnostic accuracy. It is impossible to apply scalar combination methods to the multiple functional markers directly because of infinite dimensionality of functional markers. In this article, we propose a one-dimension scalar feature motivated by square loss distance, as an alternative of the original functional curve in the sense that, it can retain information to the most extent. The square loss distance is defined as the function of projection scores generated from functional principal component decomposition. Then existing variety of scalar combination methods can be applied to scalar features of functional markers after dimension reduction to improve the diagnostic accuracy. Area under the receiver operating characteristic curve and Youden index are used to assess performances of various methods in numerical studies. We also analyzed the high- or low- hospital admissions due to respiratory diseases between 2010 and 2017 in Hong Kong by combining weather conditions and media information, which are regarded as functional markers. Finally, we provide an R function for convenient application.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1796945 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:1:p:44-63

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2020.1796945

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:49:y:2022:i:1:p:44-63