Two multivariate online change detection models
Lingzhe Guo and
Reza Modarres
Journal of Applied Statistics, 2022, vol. 49, issue 2, 427-448
Abstract:
Online change point detection methods monitor changes in the distribution of a data stream. This article discusses two non-parametric online change detection methods based on the energy statistics and Mahalanobis depth. To apply the energy statistic, we use sliding-window algorithm with efficient training and updating procedures. For Mahalanobis depth, we propose an algorithm to train the threshold with desired protective ability against false alarms and discuss factors that have an influence on the threshold. Numerical studies evaluate and compare the performance of the proposed models with three existing methods to detect changes in the mean and variability of a data stream. The methods are applied to detecting changes in the flowing volume of the Mississippi River.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1815674 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:2:p:427-448
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1815674
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().