Time-varying coefficient cumulative gap time models for intensive longitudinal ecological momentary assessment data with missingness
Xiaoxue Li,
Stewart J. Anderson,
Saul Shiffman and
Bo Zhang
Journal of Applied Statistics, 2022, vol. 49, issue 2, 498-521
Abstract:
Ecological momentary assessment (EMA) studies investigate intensive repeated observations of the current behavior and experiences of subjects in real time. In particular, such studies aim to minimize recall bias and maximize ecological validity, thereby strengthening the investigation and inference of microprocesses that influence behavior in real-world contexts by gathering intensive information on the temporal patterning of behavior of study subjects. Throughout this paper, we focus on the data analysis of an EMA study that examined behavior of intermittent smokers (ITS). Specifically, we sought to explore the pattern of clustered smoking behavior of ITS, or smoking ‘bouts’, as well as the covariates that predict such smoking behavior. To do this, in this paper we introduce a framework for characterizing the temporal behavior of ITS via the functions of event gap time to distinguish the smoking bouts. We used the time-varying coefficient models for the cumulative log gap time and to characterize the temporal patterns of smoking behavior, while simultaneously adjusting for behavioral covariates, and incorporated the inverse probability weighting into the models to accommodate missing data. Simulation studies showed that irrespective of whether missing by design or missing at random, the model was able to reliably determine prespecified time-varying functional forms of a given covariate coefficient, provided the the within-subject level was small.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1815676 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:2:p:498-521
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1815676
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().