Survival analysis for the inverse Gaussian distribution with the Gibbs sampler
Kalanka. P. Jayalath and
Raj S. Chhikara
Journal of Applied Statistics, 2022, vol. 49, issue 3, 656-675
Abstract:
This paper describes a comprehensive survival analysis for the inverse Gaussian distribution employing Bayesian and Fiducial approaches. It focuses on making inferences on the inverse Gaussian (IG) parameters μ and λ and the average remaining time of censored units. A flexible Gibbs sampling approach applicable in the presence of censoring is discussed and illustrations with Type II, progressive Type II, and random rightly censored observations are included. The analyses are performed using both simulated IG data and empirical data examples. Further, the bootstrap comparisons are made between the Bayesian and Fiducial estimates. It is concluded that the shape parameter ( $\phi =\lambda /\mu $ϕ=λ/μ) of the inverse Gaussian distribution has the most impact on the two analyses, Bayesian vs. Fiducial, and so does the size of censoring in data to a lesser extent. Overall, both these approaches are effective in estimating IG parameters and the average remaining lifetime. The suggested Gibbs sampler allowed a great deal of flexibility in implementation for all types of censoring considered.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1828314 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:3:p:656-675
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1828314
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().