Robust estimation of models for longitudinal data with dropouts and outliers
Yuexia Zhang,
Guoyou Qin,
Zhongyi Zhu and
Bo Fu
Journal of Applied Statistics, 2022, vol. 49, issue 4, 902-925
Abstract:
Missing data and outliers usually arise in longitudinal studies. Ignoring the effects of missing data and outliers will make the classical generalized estimating equation approach invalid. The longitudinal cohort study of rheumatoid arthritis patients was designed to investigate whether the Health Assessment Questionnaire score was associated with baseline covariates and changed with time. There exist dropouts and outliers in the data. In order to analyze the data, we develop a robust estimating equation approach. To deal with the responses missing at random, we extend a doubly robust method. To achieve robustness against outliers, we utilize an outlier robust method, which corrects the bias induced by outliers through centralizing the covariate matrix in the estimating equation. The doubly robust method for dropouts is easy to combine with the outlier robust method. The proposed method has the property of robustness in the sense that the proposed estimator is not only doubly robust against model misspecification for dropouts when there is no outlier in the data, but also robust against outliers. Consistency and asymptotic normality of the proposed estimator are established under regularity conditions. A comprehensive simulation study and real data analysis demonstrate that the proposed estimator does have the property of robustness.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1845623 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:4:p:902-925
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1845623
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().