Testing and dating structural changes in copula-based dependence measures
Florian Stark and
Sven Otto
Journal of Applied Statistics, 2022, vol. 49, issue 5, 1121-1139
Abstract:
This paper is concerned with testing and dating structural breaks in the dependence structure of multivariate time series. We consider a cumulative sum (CUSUM) type test for constant copula-based dependence measures, such as Spearman's rank correlation and quantile dependencies. The asymptotic null distribution is not known in closed form and critical values are estimated by an i.i.d. bootstrap procedure. We analyze size and power properties in a simulation study under different dependence measure settings, such as skewed and fat-tailed distributions. To date breakpoints and to decide whether two estimated break locations belong to the same break event, we propose a pivot confidence interval procedure. Finally, we apply the test to the historical data of 10 large financial firms during the last financial crisis from 2002 to mid-2013.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1850655 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:5:p:1121-1139
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1850655
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().