EconPapers    
Economics at your fingertips  
 

Penalized likelihood approach for the four-parameter kappa distribution

Nipada Papukdee, Jeong-Soo Park and Piyapatr Busababodhin

Journal of Applied Statistics, 2022, vol. 49, issue 6, 1559-1573

Abstract: The four-parameter kappa distribution (K4D) is a generalized form of some commonly used distributions such as generalized logistic, generalized Pareto, generalized Gumbel, and generalized extreme value (GEV) distributions. Owing to its flexibility, the K4D is widely applied in modeling in several fields such as hydrology and climatic change. For the estimation of the four parameters, the maximum likelihood approach and the method of L-moments are usually employed. The L-moment estimator (LME) method works well for some parameter spaces, with up to a moderate sample size, but it is sometimes not feasible in terms of computing the appropriate estimates. Meanwhile, using the maximum likelihood estimator (MLE) with small sample sizes shows substantially poor performance in terms of a large variance of the estimator. We therefore propose a maximum penalized likelihood estimation (MPLE) of K4D by adjusting the existing penalty functions that restrict the parameter space. Eighteen combinations of penalties for two shape parameters are considered and compared. The MPLE retains modeling flexibility and large sample optimality while also improving on small sample properties. The properties of the proposed estimator are verified through a Monte Carlo simulation, and an application case is demonstrated taking Thailand’s annual maximum temperature data.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.1871592 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:6:p:1559-1573

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2021.1871592

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:49:y:2022:i:6:p:1559-1573