Current status data with two competing risks and missing failure types: a parametric approach
Tamalika Koley and
Anup Dewanji
Journal of Applied Statistics, 2022, vol. 49, issue 7, 1769-1783
Abstract:
Missing cause of failure is a common problem in competing risks data. Here we consider a general missing pattern in which one observes a set of possible causes containing the true cause. In this work, we focus on the parametric analysis of current status data with two competing risks and the above-mentioned missing pattern. We make some simpler assumptions on the conditional probability of observing a set of possible causes of failure given the true cause and carry out maximum-likelihood estimation of the model parameters. Asymptotic properties of the maximum-likelihood estimators are also discussed. Simulation studies are performed to study the finite sample properties of the estimators and also to investigate the role of the monitoring time distribution. Finally, the method is illustrated through the analysis of a real data set.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.1881453 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:7:p:1769-1783
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2021.1881453
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().