The investigation of temperature data in Turkey’s Black Sea Region using functional data analysis
Çağlar Sözen and
Yüksel Öner
Journal of Applied Statistics, 2022, vol. 49, issue 9, 2403-2415
Abstract:
As the field of study expands, or as the number of observations in a sample increases, data observed at discrete points is generally assumed to be sampled from an underlying real function. As the number of observation points increases, those observations are likely to be sampled from a real-valued function. In this case, the derived data will be examples of a functional structure. We analyzed the daily average temperature data at 65 discrete points in 18 cities in Turkey's Black Sea Region. Fourier basis functions were used as a basis function approach because the temperature data had a periodic structure. The data were then transformed into a continuous function using the basis function and roughness penalty approach. Functional data were obtained using the roughness penalty approach. The generalized cross-validation method was used to determine the smoothing parameter of the variable (temperature variable). Finally, smoothed functional principal components analysis was applied to the functional data. In this way, changes in temperature functions, which seem hard to tackle, were evaluated on the same graph using the mean function generated for the principal component function and using the functions and the mean function obtained using the principal component function.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.1896683 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:9:p:2403-2415
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2021.1896683
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().