Minimum regularized covariance determinant and principal component analysis-based method for the identification of high leverage points in high dimensional sparse data
Siti Zahariah and
Habshah Midi
Journal of Applied Statistics, 2023, vol. 50, issue 13, 2817-2835
Abstract:
The main aim of this paper is to propose a novel method (RMD-MRCD-PCA) of identification of High Leverage Points (HLPs) in high-dimensional sparse data. It is to address the weakness of the Robust Mahalanobis Distance (RMD) method which is based on the Minimum Regularized Covariance Determinant (RMD-MRCD), which indicates a decrease in its performance as the number of independent variables (p) increases. The RMD-MRCD-PCA is developed by incorporating the Principal Component Analysis (PCA) in the MRCD algorithm whereby this robust approach shrinks the covariance matrix to make it invertible and thus, can be employed to compute the RMD for high dimensional data. A simulation study and two real data sets are used to illustrate the merit of our proposed method compared to the RMD-MRCD and Robust PCA (ROBPCA) methods. Findings show that the performance of the RMD-MRCD is similar to the performance of the RMD-MRCD-PCA for p close to 200. However, its performance tends to decrease when the number of p is more than 200 and worsens at p equals 700 and larger. On the other hand, the ROBPCA is not effective for less than 20% contamination as it suffers from serious swamping problems.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2022.2093842 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:50:y:2023:i:13:p:2817-2835
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2022.2093842
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().