Variable selection in linear-circular regression models
Onur Camli,
Zeynep Kalaylioglu and
Ashis SenGupta
Journal of Applied Statistics, 2023, vol. 50, issue 16, 3337-3361
Abstract:
Applications of circular regression models are ubiquitous in many disciplines, particularly in meteorology, biology and geology. In circular regression models, variable selection problem continues to be a remarkable open question. In this paper, we address variable selection in linear-circular regression models where uni-variate linear dependent and a mixed set of circular and linear independent variables constitute the data set. We consider Bayesian lasso which is a popular choice for variable selection in classical linear regression models. We show that Bayesian lasso in linear-circular regression models is not able to produce robust inference as the coefficient estimates are sensitive to the choice of hyper-prior setting for the tuning parameter. To eradicate the problem, we propose a robustified Bayesian lasso that is based on an empirical Bayes (EB) type methodology to construct a hyper-prior for the tuning parameter while using Gibbs Sampling. This hyper-prior construction is computationally more feasible than the hyper-priors that are based on correlation measures. We show in a comprehensive simulation study that Bayesian lasso with EB-GS hyper-prior leads to a more robust inference. Overall, the method offers an efficient Bayesian lasso for variable selection in linear-circular regression while reducing model complexity.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2022.2110860 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:50:y:2023:i:16:p:3337-3361
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2022.2110860
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().