A semi-parametric Bayesian approach for detection of gene expression heterosis with RNA-seq data
Ran Bi and
Peng Liu
Journal of Applied Statistics, 2023, vol. 50, issue 1, 214-230
Abstract:
Heterosis refers to the superior performance of a hybrid offspring over its two inbred parents. Although heterosis has been widely observed in agriculture, its molecular mechanism is not well studied. Recent advances in high-throughput genomic technologies such as RNA sequencing (RNA-seq) facilitate the investigation of heterosis at the gene expression level. However, it is challenging to identify genes exhibiting heterosis using RNA-seq data because high-dimension of hypotheses tests are conducted with limited sample size. Furthermore, detecting heterosis genes requires testing composite null hypotheses involving multiple mean expression levels instead of testing simple null hypotheses as in differential expression analysis. In this manuscript, we formulate a statistical model with parameters directly reflecting heterosis status, and develop a powerful test to detect heterosis genes. We employ a Bayesian framework where the RNA-seq count data are modeled through a Poisson-Gamma mixture with Dirichlet processes as priors for the distributions of the parameters of interest, the fold changes between each parent and the hybrid. Markov Chain Monte Carlo sampling with Gibbs algorithm is utilized to provide posterior inference to detect heterosis genes while controlling false discovery rate. Simulation results demonstrate that our proposed method outperformed other methods utilized to detect gene expression heterosis.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.2004581 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:50:y:2023:i:1:p:214-230
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2021.2004581
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().