EconPapers    
Economics at your fingertips  
 

The unit log–log distribution: a new unit distribution with alternative quantile regression modeling and educational measurements applications

Mustafa Ç. Korkmaz and Zehra Sedef Korkmaz

Journal of Applied Statistics, 2023, vol. 50, issue 4, 889-908

Abstract: In this paper, we propose a new distribution, named unit log–log distribution, defined on the bounded (0,1) interval. Basic distributional properties such as model shapes, stochastic ordering, quantile function, moments, and order statistics of the newly defined unit distribution are studied. The maximum likelihood estimation method has been pointed out to estimate its model parameters. The new quantile regression model based on the proposed distribution is introduced and it has been derived estimations of its model parameters also. The Monte Carlo simulation studies have been given to see the performance of the estimation method based on the new unit distribution and its regression modeling. Applications of the newly defined distribution and its quantile regression model to real data sets show that the proposed models have better modeling abilities than competitive models. The proposed unit quantile regression model has targeted to explain linear relation between educational measurements of both OECD (Organization for Economic Co-operation and Development) countries and some non-members of OECD countries, and their Better Life Index. The existence of the significant covariates has been seen on the real data applications for the unit median response.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.2001442 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:50:y:2023:i:4:p:889-908

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2021.2001442

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:50:y:2023:i:4:p:889-908