Model-based joint curve registration and classification
Lin Tang,
Pengcheng Zeng,
Jian Qing Shi and
Won-Seok Kim
Journal of Applied Statistics, 2023, vol. 50, issue 5, 1178-1198
Abstract:
In this paper, we consider the problem of classification of misaligned multivariate functional data. We propose to use a model-based approach for the joint registration and classification of such data. The observed functional inputs are modeled as a functional nonlinear mixed effects model containing a nonlinear functional fixed effect constructed upon warping functions to account for curve alignment, and a nonlinear functional random effects component to address the variability among subjects. The warping functions are also modeled to accommodate common effect within groups and the variability between subjects. Then, a functional logistic regression model defined upon the representation of the aligned curves and scalar inputs is used to account for curve classification. EM-based algorithms are developed to perform maximum likelihood inference of the proposed models. The identifiability of the registration model and the asymptotical properties of the proposed method are established. The performance of the proposed procedure is illustrated via simulation studies and an analysis of a hyoid bone movement data application. The statistical developments proposed in this paper were motivated by the hyoid bone movement study, the methodology is designed and presented generality and can be applied to numerous areas of scientific research.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.2023118 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:50:y:2023:i:5:p:1178-1198
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2021.2023118
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().